

Effects of Empagliflozin on Renal and Cardiac MRI Measures in Patients with Chronic Kidney Disease

Parminder Judge

on behalf of the

EMPA-KIDNEY Collaborative Group

Disclosures

 The EMPA-KIDNEY trial was initiated by the University of Oxford who led its design, analysis, and reporting with a Steering Committee of expert collaborators

- The trial was funded and sponsored by Boehringer Ingelheim
- Other financial support from:
 - Eli Lilly & the UK Medical Research Council (MRC)
 - Follow a long-standing departmental policy to decline honoraria

EMPA-KIDNEY's double-blind placebo-controlled design

Population: Designed to assess the effects of SGLT2 inhibition in a broad range of ~ 6000 patients with chronic kidney disease (CKD) at risk of progression, incl. $\geq 1/3^{rd}$ with diabetes $\& \geq 1/3^{rd}$ without

Intervention

Investigator-judged clinically appropriate renin-angiotensin inhibitor use, where indicated & tolerated

Empagliflozin 10 mg once daily

Placebo once daily

Event driven: 1070 primary outcomes: 90% power at 2p<0.05 to detect an 18% relative risk reduction

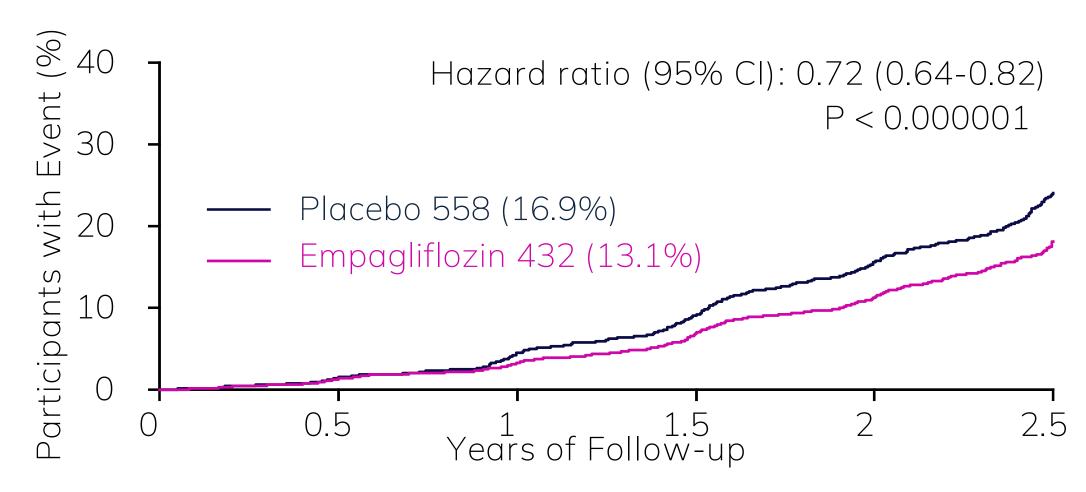
Primary composite outcome

CV death

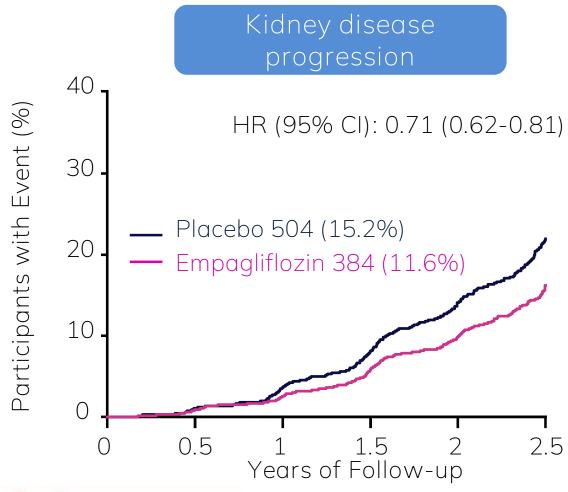
OR

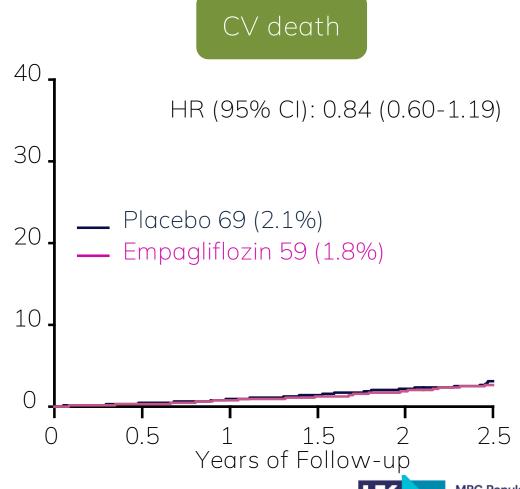
Kidney disease progression

End-stage kidney disease (ESKD): Dialysis/kidney transplant Renal death

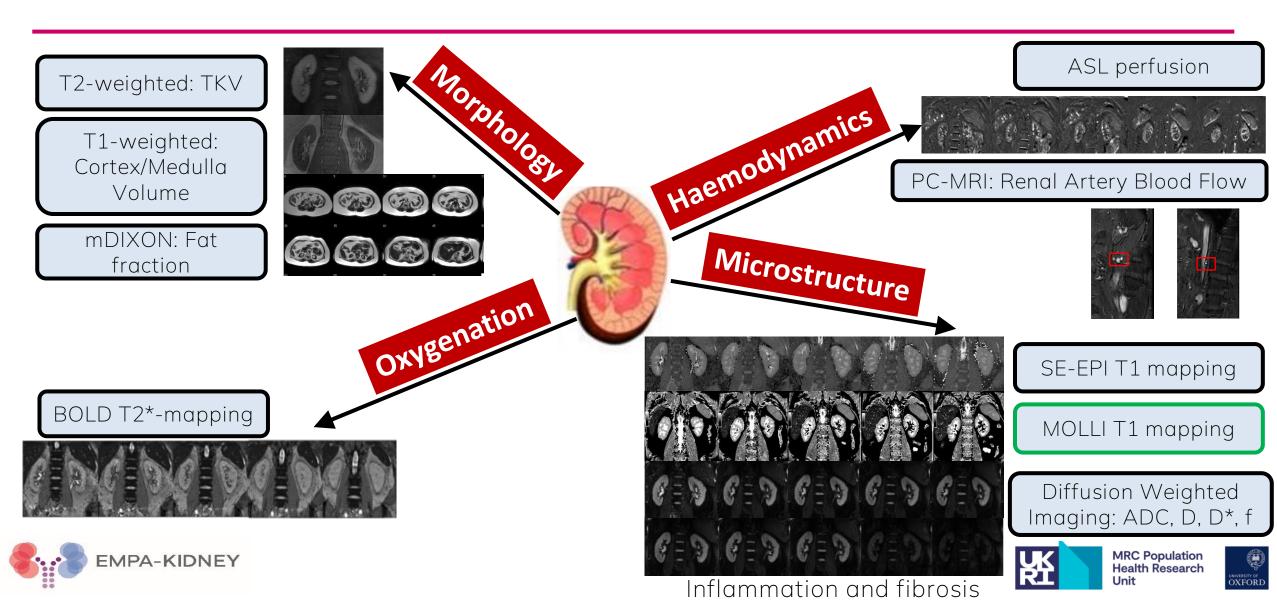

eGFR change ≥40% eGFR decline, or to <10 mL/min/1.73m²

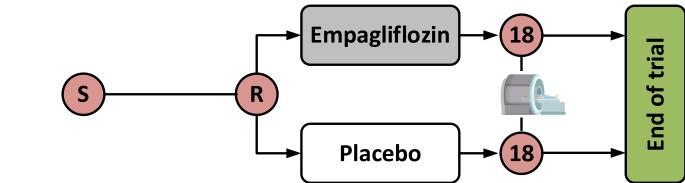
Primary Composite Outcome





Components of the Primary Outcome



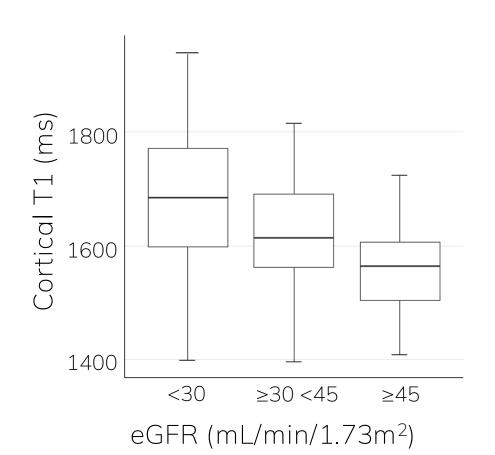


Multiparametric MRI protocol: Kidneys

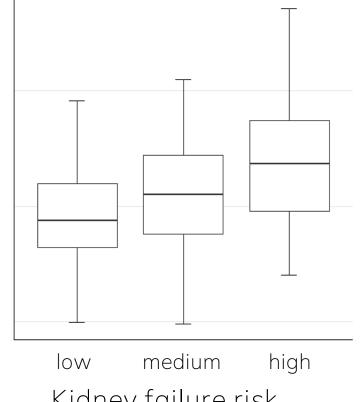
MRI sub-study design

• Mechanistic MRI sub-study to investigate effects of Empagliflozin on kidney and cardiac structure and function. Data collected across 4 sites.

- Primary outcome: Kidney cortex fibrosis/inflammation at ~18 months
- Secondary outcomes:
 - Kidney: medullary fibrosis, size, arterial flow, global perfusion, diffusion, oxygenation and fat content
 - Cardiac: LV mass, LV ejection fraction, LV fibrosis, diastolic function


Baseline characteristics of MRI substudy

	Empagliflozin (N=93)		Placebo (N=79)	
Age at randomization*, years	59.7	(15.5)	61.0	(15.2)
Female sex, n (%)	26	(28%)	19	(24%)
Diabetes, n (%)	22	(24%)	18	(23%)
Estimated GFR*, mL/min/1.73m ²	36.1	(14.2)	37.3	(10.9)
Urine ACR [†] , mg/g	285	(194-419)	200	(130-306)
NTpro-BNP [†] , ng/L	134	(59-247)	128	(71-314)



Associations with kidney cortex T1

<30 ≥30 <300 ≥300 Urine ACR (mg/g)

Results: Kidney MRI outcomes

Outcome	Empagliflozin (N=93)	Placebo (N=79)	Difference in means (95% CI)†	p value
Primary				
Cortical T1 MOLLI (ms) [†]		1634 (11)		
Secondary				
Medullary T1 MOLLI (ms) [†]		1923 (11)		

[†]Values are absolute differences in arithmetic means (95% confidence interval). The estimates and p values were derived from linear regression with adjustment for elements included in the minimization algorithm which determined treatment allocation (age, sex, prior diabetes, eGFR, and uACR).

Results: Kidney MRI outcomes

Outcome	Empagliflozin (N=93)	Placebo (N=79)	Difference in means (95% CI)†	p value
Primary				
Cortical T1 MOLLI (ms) [†]	1623 (10)	1634 (11)	-11 (-41, 18)	0.45
Secondary				
Medullary T1 MOLLI (ms) [†]	1930 (11)	1923 (11)	7 (-24, 37)	0.67

[†]Values are absolute differences in arithmetic means (95% confidence interval). The estimates and p values were derived from linear regression with adjustment for elements included in the minimization algorithm which determined treatment allocation (age, sex, prior diabetes, eGFR, and uACR).

Results: Cardiac MRI outcomes

Outcome	Empagliflozin (N=93)	Placebo (N=79)	Difference in means (95% CI)†	p value
Myocardial T1 MOLLI (ms) [†]	1275 (5)	1278 (5)	-3 (-16, 10)	0.67
Left ventricular ejection fraction (%)	52 (1)	51 (1)	1 (-1, 4)	0.37
Left ventricular mass index (g/m²) [†]	45 (1)	48 (1)	-3 (-5, 0)	0.07

†Values are absolute differences in arithmetic means (95% confidence interval). The estimates and p values were derived from linear regression with adjustment for elements included in the minimization algorithm which determined treatment allocation (age, sex, prior diabetes, eGFR, and uACR [but not region as the MRI substudy was only conducted in Europe]). Difference in systolic and diastolic BP: -2.6±0.3 mmHg & -0.5±0.2 mmHg respectively.

Preliminary Results of MRI Sub-study

- In this 172-participant EMPA-KIDNEY MRI substudy, compared to placebo, empagliflozin had no detectable effect on:
 - Kidney T1 MOLLI measure of inflammation/fibrosis
 - Cardiac measures of fibrosis (T1 MOLLI), ejection fraction and LV mass.
- Possible explanations for lack of effect include:
 - Limited power due to the single scan protocol with a distribution of aetiology
 - Attenuation of cardiac effects at low eGFR
 - Insufficient duration of exposure to Empagliflozin
- Future work will assess kidney haemodynamic, oxygenation and other microstructural related MRI measures, and cardiac strain & diastolic dysfunction.

Acknowledgements

 We thank the 172 participants, members of the committees, and coordinating and local site staff who make up this EMPA-KIDNEY substudy

https://www.empakidney.org/our-collaborators

